
CONTROL OF VST PLUG-INS USING OSC

Michael Zbyszyński Adrian Freed
Center for New Music and Audio Technologies (CNMAT)

Department of Music
University of California, Berkeley

1750 Arch Street
Berkeley, CA, USA

{mzed, adrian}@cnmat.berkeley.edu

ABSTRACT

The basic control structure of VST audio plug-ins can
limit their usefulness. Control can be improved through
the use of Open Sound Control by developing a flexible
name space that employs multiple, intuitive parameter
names (and aliases), higher-level controls and range
mapping, simplifying control for the user. We will
demonstrate these ideas with Max/MSP patches that
repackage VST plug-ins in a more usable way and also
introduce the idea that plug-in interfaces themselves can
be improved by building in a well-formed OSC name
space. Such a name space would enhance the longevity
and flexibility of finished musical works. We will also
show that when the plug-in is controlled directly with
OSC atomicity and queries, control could be further
improved.

1. INTRODUCTION

While audio plug-ins are extremely useful, limitations
of their control structure can make them unwieldy to
use. Specifically, the name space of each VST plug-in
[1] is flat and populated by parameter names that have
been carefully chosen by the designers of the plug-in,
but do not necessarily represent the terminology or
language preferred by the user. Parameter names are
mapped through a generic range (0. to 1.) without
informing the user about the mapping range or the
specific units that are employed inside the plug-in, and
each message controls only one parameter.

Through the use of Open Sound Control
(OSC) [2], a flexible name space can be developed that
employs multiple, intuitive parameter names (and
aliases), higher-level controls and range mapping,
simplifying control for the user. We will demonstrate
these ideas with Max/MSP patches that repackage VST
plug-ins in a more usable way and also introduce the
idea that plug-in interfaces themselves can be improved
by building in a well-formed OSC name space. We will
also suggest ways (e.g., atomicity and queries) that
control could be further improved if the plug-in could
be controlled directly with OSC.

In addition to creating a more useable control
structure, careful use of the OSC abstractions proposed
here will allow composers and performers to create more
fully documented works than can be easily updated with
changing technologies. A thoughtfully designed name
space can separate the musical intention from the
particular plug-in, allowing composers to adapt and
repurpose pieces as plug-ins evolve.

2. Problems with VST Control Structure

2.1. Names Dictated by Plug-In Designers

2.1.1. Non-intuitive names

Many audio processing plug-ins fall into typical
categories, such as dynamics processors or reverbs.
Each specific user has expectations for the names of the
parameters in an archetypical reverb, for instance, which
are determined by that user’s technical and linguistic
background. Where one user might expect a parameter
called “Wet Level,” another might be more familiar with
“Reverb Gain.” Users must adapt to the naming scheme
of the plug-in designer. This complicates the use of
multiple plug-ins from disparate sources; the user must
constantly change naming schemes to do something as
simple as auditioning multiple reverbs with similar
parameter settings.

2.1.2. Need for aliases

The use of a rich OSC name space provides the
opportunity for multiple aliases to the same parameter.
An intelligent naming scheme would direct both “Wet
Level” and “Reverb Gain” to the same parameter,
allowing the user to focus on the specifics of
controlling the sound. If the user changes reverb plug-
ins, they could continue with their preferred naming
scheme for the generic parameters. They could
concentrate on the sonic differences between reverb
algorithms, rather then the naming idiosyncrasies of
each design.

2.1.3. Simplified reconstruction

Another advantage to a carefully designed name space
would come when documenting, preserving, or
reconstructing a finished musical work. Because the
musician’s original sonic intent would be represented in
a form that was not tied to a specific plug-in
technology, it could be easily understood and adapted
to suit the situation of future technologies. When a
piece travels or is revisited, explicitly descriptive
parameter names, such as “Reverb Gain,” are more
easily interpreted than opaque names, such as “Mix” or
Mode.”

2.2. Parameters mapped to a generic range

The next step in an intelligent plug-in control scheme
would be to address parameters in established units.
All VST parameters are currently mapped to the range of
0.0 to 1.0, effectively obscuring the values being
controlled. Furthermore, a particular user might prefer
setting crossover frequencies in Hertz or MIDI cents,
and might prefer percentages to decibels as a unit of
loudness. In addition to parameter name aliases,
parameters could be addressed in specific units. For
example “Wet Level 63%” or “Reverb Gain –6dB.” By
accommodating specific user’s predilections, plug-ins
would become more intuitively useable.

2.3. Flat Name Space

2.3.1. Hierarchical name space

The naming space for VST plug-ins is flat, simply a list
of parameters that could be addressed. While this might
be adequate for plug-ins with a few parameters, some
plug-ins (e.g. Waves Parametric Convolution Reverb [3])
can have dozens of parameters. In such a case, it makes
sense to organize parameters in a hierarchical name space.
For instance, a multiband compressor will have many
crossover frequencies. These could be addressed as
“/crossover/low<->mid n” and “/crossover/mid<->high
n” (or, depending on the user, “/crossover/middle<->hi
n” or “/x-over/m<->h n”). Such a naming scheme would
help keep the control structure clear and comprehensible.

The ability to reorganize parameters in a clear
hierarchy would have special significance in to users
working with assistive technologies. For example, blind
users working with screen readers could customize their
name space to quickly navigate to the most pertinent
parameters, rather than waiting to read through a long
list of all possibilities.

2.3.2. Pattern matching

A carefully designed hierarchical name space would
allow the user leverage OSC’s use of pattern matching.
[4] Following the example of a multiband compressor,
the compression thresholds might be named
“/low/threshold n ,” /middle/threshold n ,” and
“/high/threshold n.” In the OSC Address Pattern, “*”
matches any sequence of zero or more characters. This
would allow the user to simultaneously adjust all
thresholds by sending the message “/*/threshold n.”

2.3.3. One message, many parameters

Another advantage of a careful created OSC name space
would the use higher-level names that control multiple
parameters. In the example the context of multi-band
compression, the user might be given explicit control
of the cut-off frequencies between the low, middle, and
high bands. Alternatively, the user could prefer to
control the center frequency and bandwidth of the
middle band. With OSC, these high-level parameter

names could be created to adjust the appropriate
crossover frequencies accordingly.

3. OSC SOLUTION IN MAX/MSP

3.1. Two reverb example

Figure 1. Top level of two reverb patch

The following examples were programmed in Max/MSP
following the name space design guidelines suggest
above. The first demonstrates a control structure for
controlling two reverb plug-ins (mda Freeverb [5] and
Griesinger 2.2 by Nathan Wolek [6]), each with different
parameter names.

This name space was designed to enable the user to
switch between the reverb plug-ins while maintaining a
consistent control structure. Similar parameters in each
plug-in are addressed with the same name. For
instance, “Reverblevel” addresses “Wetlevel” in the
Freeverb and “reverbgain” in the Griesinger reverb. The
example also suggests the possibility of aliases and
unconventional terminology; “slimeyness” is also
mapped to “Wetlevel” and “reverbgain.”

Freeverb: Griesinger:
/[Freeverb, 1]/Mode [0.-
1.]

n/a

n/a /[Griesinger, 2]/bandwidth
[0.-1.]

/[Freeverb, 1]/Roomsize
[0.-1.]

/[Griesinger, 2]/Roomsize
[0.-1.]

/[Freeverb, 1]/Width [0.-
1.]

/[Griesinger, 2]/Damping
[0.-1.]

n/a /[Griesinger, 2]/pre-delay
[0.-1.]

/[Freeverb, 1]/Reverblevel
[0.-1.]

/[Griesinger,
2]/Reverblevel [0.-1.]

/[Freeverb, 1]/Drylevel
[0.-1.]

/[Griesinger, 2]/Drylevel
[0.-1.]

/[Freeverb, 1]/slimeyness
[0.-1.]

/[Griesinger,
2]/slimeyness [0.-1.]

Table 2. Name space for two reverb patch

3.2. Multiband compressor example

The namespace for controlling a multiband compressor
(mda MultiBand [7]) is much more complicated,
especially in its use of aliases. It also includes higer
level parameters that influence more than one of the
plug-in’s built in parameters.

Specific bands:
/[Low, low, L, l]/[Comp, Compression, comp,
compression] [0.-1.]
/[Low, low, L, l]/[dbcomp, dBcomp] [0.-30.]
/[Low, low, L, l]/[Out, Output, out, output] [0.-1.]
/[Low, low, L, l]/[dboutput, dBoutput] [-20.- 20.]
/[Mid, mid, M, m/[Comp, Compression, comp,
compression] [0.-1.]
/[Mid, mid, M, m]/[Out, Output, out, output] [0.-1.]
/[Mid, mid, M, m/[dbcomp, dBcomp] [0.-30.]
/[Mid, mid, M, m]/[dboutput, dBoutput] [-20.- 20.]
/[Hi, hi, H, high]/[Comp, Compression, comp,
compression] [0.-1.]
/[Hi, hi, H, high]/[Out, Output, out, output] [0.-1.]
/[Hi, hi, H, high]/[dbcomp, dBcomp] [0.-30.]
/[Hi, hi, H, high]/[dboutput, dBoutput] [-20.- 20.]

Higher-level parameters:
/Mid-CF [value in HZ]
/Mid-BW [value in HZ]

General Parameters:
/L<>M [0.-1.]
/M<>H [0.-1.]
/LM-Hz [87.-1020.]
/MH-HZ [111.-19606.]
/Attack [0.-1.]
/Release [0.-1.]
/Stereo [0.-1.]
/Process [0.-1.]
Table 2. Name space for multiband compressor patch

The first group of names address single plug-in
parameters, and demonstrate multiple naming
possibilities for the same parameter. Different users
might prefer “Hi” to “high,” or simply “H.” This space
could be expanded to include other aliases for language
localization. Additionally, the parameters “/*/[dbcomp,
dBcomp]” and “/*/[dboutput, dBoutput]” employ real
units, decibels instead of the generic range of 0. to 1.
They are mapped accordingly in the max patch before
being sent to the plug-in. Other units of loudness or
intensity could be added, each with their own mapping.

The second pair of names are higher-level
parameters. They allow the user to directly control the
center frequency and bandwidth of the middle
compression band, implicitly influence all three bands.
The OSC parameter value is translated into the proper
crossover frequencies for both the low to middle and the
middle to high crossover, and forwarded to the plug-ins
built in parameters.

The final group of generalized parameters
includes another example of real units, setting the
crossover frequencies in Hertz.

The patch, below, also uses OSC’s pattern
matching abilities. To adjust all of the output gains
simultaneously and in decibles, the user sends the
message: “/?/dboutput n .” Variants of this message
using other aliases are also available.

Figure 2. Top level of multiband compression
patch

4. SUGGESTIONS FOR FURTHER
IMPROVEMENT

All of the Max/MSP examples in this paper were hand
built around specific plug-ins. [8] It is possible to query
parameter names, but each plug-in had to be loaded and
observed in action to determine the exact units and
range of each parameter. Even the, the curve to which
the parameters are mapped is not always obvious. OSC
supports a full querying system. If OSC support was
integrated into VST plug-ins, much of this namespace
could be built automatically, or built in advance by the

plug-in designer. Plug-in vendors have met this
suggestion with enthusiastic support. In the Open
Sound World environment, some of this handwork
would be simplified because all objects inherit a
hierarchical OSC name space, including the VST plug-
in loader. Products by Native Instruments [9], Reaktor
and Intakt, already support OSC in their standalone
applications, but it is not possible to address their plug-
ins directly using OSC.

Another important feature of OSC is atomicity.
Messages that should be executed simultaneously can be
sent together as an indivisible bundle; they will be
either all executed in one scheduler tick, or none will
be. While this behavior is desirable in many
circumstances, it could be critical in cases such as
updating filter coefficients. Coefficients received
serially could lead to an unstable filter state. Atomicity
is not implemented in the current VST specification. It
is possible to atomically set plug-in parameters in the
OSW wrapper by connecting them up to synchronous
source, such as an OSC bundle.

This paper has dealt exclusively with control of
VST audio plug-ins, but OSC would be similarly
helpful in managing control of VST Instruments. Also,
the control structure recommendations are applicable to
other formats of plug-ins, such as AU, TDM, or RTAS.

5. CONCLUSIONS

Currently, the control structure for VST plug-ins is
disadvantaged by a limited, flat name space. When
using multiple plug-ins, users must remember idiomatic
names for generic parameters, and navigate through
values that have all been mapped to the same range. The
usefulness of plug-ins in general could greatly improved
by implementing a thoughtfully designed control
structure in OSC that includes:

• an hierarchical name space designed to take
advantage of pattern matching

• a set of naming conventions that exhibits clarity and
portability

• flexibility in naming to accommodate users with
diverse abilities, backgrounds, and intentions

• values addressable in real units

• high-level parameters that allow the user to control
multiple values or multiple plug-ins with single
messages

• atomicity in message handling

Such a control structure would improve control during
the creation of musical works, as well as simplify the
preservation and reconstruction of works in the future.

6. ACKNOWLEDGEMENTS

Special thanks to the UC Discovery Grant Program for
its generous support.

7. REFERENCES

[1] Steinberg Media Technologies “VST Plug-ins SDK
2.3.” http://www.steinberg.net/steinberg/ygrabit/vstsk
/OnlineDoc/vstsdk2.3/index.html , 4 March 2005.

[2] Wright, Matthew, and Adrian Freed. "Open Sound
Control: A New Protocol for Communicating with
Sound Synthesizers." Paper presented at the
International Computer Music Conference,
Thessaloniki, Hellas 1997.

[3] Waves Ltd. Digital Audio Processing, IR1
Parametric Convolution Reverb, http://www.waves .
com/content.asp?id=1564, 4 March 2005.

[4] Torkington, Nathan. Regular Expression Pocket
Reference. Sebastopol, Calif. ; Farnham: O'Reilly,
2003.

[5] Maxim Digital Audio "Freeverb" http://www.mda-
vst.com/, 5 March 2005.

[6] Wolek, Nathan “Griesinger 2.2” http://www.nathan
wolek.com/, 5 March 2005.

[7] Maxim Digital Audio "mda MultiBand" http://
www. mda-vst.com/, 5 March 2005.

[8] Zbyszynski, Michael "OSC Control of VST Plug-
ins." Poster presented at the Open Sound Control
Conference, Berkeley, CA, USA, 2004.

[9] Native Instruments GmbH http://www.nativinstru-
ments.de/, 10 March 2005.

