
A Query System for OSC...
towards a common real-time command/control protocol

 ...A Query System for OSC

towards a common real-time command/control protocol

Andrew Schmeder
(presenting)

and Matthew Wright

June 30 2004

A Query System for OSC...
towards a common real-time command/control protocol

Preamble
➔ History

● “A Query System for OSC...”
 might be OSC/Command

● OSC/Command : Control + Command
● QUERY is a type of command

➔ Acknowledgements
● Matthew Wright, OSC Specification 1.0 and the

Query System for OSC
● James McCartney, creator of SuperCollider
● Amar Chaudhary, creator of Open Sound World

➔ Disclaimer
● Work under construction...
● Statements are provided “as is”

A Query System for OSC...
towards a common real-time command/control protocol

Background : Open Sound Control
➔ Open Sound Control Specification 1.0

● Packetized
● Real-time

● Small, bounded resources
● Lightweight

● Stateless
● Scalable
● Translateable

● Human-readable hierarchical namespace
● Transport and Platforrm-Independant

➔ Draft Proposals for an OSC Query System
(Wright, et. al)

● */documentation, */type-signature, etc

A Query System for OSC...
towards a common real-time command/control protocol

Background : Open Sound World
➔ Implementation of ... an interface for OSW with

OSC
● Hierarchical address space
● Every node corresponds to an Object, e.g.,

● Container
● Transform
● State
● Activation

● Nodes are unordered sets, addressed by name
● Flow of execution is determined by directed graph

➔ “Method oriented” command system --
● /container/transform/activation-command [args...].

A Query System for OSC...
towards a common real-time command/control protocol

Background : SuperCollider
➔ SuperCollider Server Synth Engine

Command Reference
● Tree where a node is a Synth or Group
● Nodes are in ordered lists, overall tree order deter-

mines execution of Synths.
➔ “Agent Oriented” command system

● /command [node, args, [node, args, [...]]]
(A. Freed)

A Query System for OSC...
towards a common real-time command/control protocol

Control and Command...
➔ control, n., dictionary.com :

● A controlling agent, device, or organization
● A spirit presumed to speak or act

through a medium
● An instrument... used to operate, ... or guide a machine.

i.e., Controls.
➔ command, n., dictionary.com :

● (Computer Science) A signal that initiates an operation de-
fined by an instruction

A Query System for OSC...
towards a common real-time command/control protocol

Motivation
➔ Complex or general-purpose applications

● Open Sound World
● SuperCollider
● ... plugin automation, distributed/peer computing

➔ Can diverse applications share a
common interface?

● To some extent, yes – it has been done with OSC
● For complex applications; as of yet there is no sharing

➔ Do we need this?
● Yes.
● Inter-application multi-media is a growing trend
● Programmers should not need to invent their own

command syntax...

A Query System for OSC...
towards a common real-time command/control protocol

Requirements...
➔ Transport

● Reliable delivery
● Bi-directional; or multi-directional
● Peer discovery

➔ State
● Client/Server relation assigns responsibilities

● Client
● Track server namespace
● Monitor important parameters

● Server
● Anwser queries
● Send notifications

● Optimization Support
● Time/Space tradeoff

A Query System for OSC...
towards a common real-time command/control protocol

...Requirements
➔ Resource Management

● Testing and control of platform limits
➔ Optimization

● Some people think we need it...
● Closing the efficiency gap

➔ Compatibility
● Don't break existing OSC use patterns (control-patterns)

➔ OSC Extentions
● More types (primitive and compound)
● More powerful pattern matching language
● Parsing rules for optimization

➔ Interoperability
● Negotiation of capabilities between peers
● Identification of common namespaces (schema)

A Query System for OSC...
towards a common real-time command/control protocol

Survey : Command Syntax
➔ *nix CLI

● /command [args...] [files...]
➔ URL

● scheme://domain/path/file.ext#fragment?query
➔ XSL / XPath

● <xsl:template match=”/”>
 <xsl:command select=”*”>

● <xsl:apply-templates>...
➔ XML-RPC

● <methodCall>
 <methodName>object.command</methodName>

● <params><param><value><int>42</int><...>

A Query System for OSC...
towards a common real-time command/control protocol

Survey : Repsonse Syntax
➔ *nix CLI

● Standard Input, Output, Error
➔ HTTP

● HTTP Status Code (200: OK, 404: Not Found...)
➔ XML-RPC

● <methodResponse>
● <fault> | <params> ...

➔ SuperCollider
● /done | /fail | /late ...

➔ Open Sound World
● /input/address (int)return-code [args...]

A Query System for OSC...
towards a common real-time command/control protocol

Survey : Asynchronous Notification Syntax
➔ SuperCollider

● /n_on | /n_off ...
➔ Open Sound World

● Set Parameter => Trigger Activation
➔ GUIs

● bind(activator, function)
➔ POSIX

● select(...) | poll(...) ...
● signals and handlers

➔ Max / PD + OSC
● [route /input ...]
● => [inlet X is hot ...]

A Query System for OSC...
towards a common real-time command/control protocol

Proposal...
➔ Let OSC/Command addresses have two axes.

● The Control Axis
● The Command Axis

● /control/axis/#command.axis
● Keeps control and command layers seperate

● Conform with “typical OSC address” use pattern; i.e., ad-
dress corresponds to objects/parameters.

● OSC => URI
● osc://domain:port/path#command?args...

➔ Types of Signals
● Control (no command, back-compatible)
● Prompt / Query
● Response : Normal / Error | Fault
● Notification

A Query System for OSC...
towards a common real-time command/control protocol

...Proposal
➔ Example:

● -> /container/node/#prompt
● <- #reply [/container/node/#prompt] [answer]

➔ Some basic queries (so far):
● */#documentation
● */#type-signature
● */#return-type-signature
● */#current-value
● */#osc-schema

➔ Some extra types:
● {} dictionary
● v* vector
● u unicode string

A Query System for OSC...
towards a common real-time command/control protocol

Query = Prompt + Response/Error
➔ Response might be asynchronous

● It must contain suffucient information to disambiguate the
prompt; a copy of the input message (or at least its ad-
dress) as the first argument is suffucient.

● #reply [copy of input message ...] ...
➔ Error conditions

● Same as #reply, but adds an error-code, e.g.,
● #error.code [copy of input ...] ...

● Some error codes:
● undefined missing
● relocated failed
● mismatch late
● infeasible volatile

A Query System for OSC...
towards a common real-time command/control protocol

Query : Documentation
➔ Gets human-readable documentation

● -> /#documentation
● <- #reply /#documentation “Open Sound World 1.0”

● Returns a string, or a URL.
● Multi-lingual; specify language preferences in query.

● -> /#documentation 'fr', 'en'
● <- #reply [documentation 'fr', 'en']
● [language-matched] [string-or-url]

● Use unicode strings, as necessary.

A Query System for OSC...
towards a common real-time command/control protocol

Query : Type-Signature
➔ Find out what types are expected as input ar-

guments at an address
● /container/node/#type-signature
● #reply [...#type-signature] 'fiis'

➔ Determine syntax for
type-code pattern matching.

● e.g., standard regex
➔ Extra information:

● Parameter constraints
● Class name

● #reply [/cycle~/freq/#type-signature] 'f'
● { min => 0.0, max => 22050.0, ... }
●

A Query System for OSC...
towards a common real-time command/control protocol

Query : Return Type Signature
➔ For addresses which represent callables

● Describes their return format.
● /container/method/#return-type-signature
● #reply [...#return-type-signature] '...'
●

A Query System for OSC...
towards a common real-time command/control protocol

Query : Current-Value
➔ Get the current-value of a parameter

● Value should match type-signature
● /param/#current-value
● #reply /param/#current-value 42.0

● Query should be used with a timestamped input; i.e.,
when do you want to know the current value?

A Query System for OSC...
towards a common real-time command/control protocol

Query : List Namespace
➔ List sub-nodes at a location

● /container/
● #reply /container/ 'node1', 'node2', ...

● A namespace might be volatile
● /grain-cloud/atoms/
● #error.volatile [/grain-cloud/atoms]

● Volatility is determined by platform resource constraints...
● Incremental notification is more efficient way to monitor ac-

tivity in a volatile space...
●

●

A Query System for OSC...
towards a common real-time command/control protocol

Query : OSC Schema
➔ Identify common namespace use patterns.

● Schema = Namespace + Semantics
● Similar to xml-ns

● /midi_port/#osc-schema
● #reply /midi_port/#osc-schema

 http://midi.opensoundcontrol.org
● Decentralized system

● Authors create their own ideas for namespace
● Identify namespace usage by URL

● Centralized also... (M. Cantor)
● Schema hosted on opensoundcontrol.org are

the “official recommendations”.

A Query System for OSC...
towards a common real-time command/control protocol

Pattern Expansion
➔ How to handle use of OSC address patterns

● /*/#command
● Expand

● Globbing pattern is equivalent to sending n messages to
each matching target... respond accordingly.

● -> /*/#documentation
● <- #reply /node1/#documentation 'Node #1'
● <- #reply /node2/#documentation 'Node #2'
● ...

● Interpret
● e.g., Container with Template

● -> /grain-cloud/atoms/*/#type-signature
● <- #reply /grain-cloud/atoms/*/#type-signature

 '' { class => 'Grain...' }

A Query System for OSC...
towards a common real-time command/control protocol

Container Patterns
➔ Set value of contained objects

with relative addressing...
● /container/ {
● node1 => 42.0,
● node2 => 43.0,
● subcontainer/ => {
● ...
● }
● ...
● }

A Query System for OSC...
towards a common real-time command/control protocol

Notifications
➔ Parameter state monitoring

● on-set
● on-change

➔ Namespace changes
● on-move
● on-destroy
● on-create

➔ Binding Options
● return-address
● update-rate
● timeout

➔ Syntax
● /address/#notify.on-set { timeout, max-rate, .. }
● #notice.on-set [...]

A Query System for OSC...
towards a common real-time command/control protocol

Optimization
➔ String-Intern System

● All OSC 'command strings' can be replaced by
an integer ID.

● Use negative numbers :
(first-bit set to differentiate from printable strings...)

● Apply to addresses and type-tag strings
● Connects to notification system

● As the server maps addresses => ints, a notification mes-
sage to the client will make it aware of the location...

➔ Hash Codes instead of copy of input message
(McCartney)

➔ Specifics of how this works...
● TODO

A Query System for OSC...
towards a common real-time command/control protocol

Compliance Verification
➔ Server states its features / limitations

● Validation service can test for proper
implementation

● Max packet size, etc...
● TODO

A Query System for OSC...
towards a common real-time command/control protocol

Transport Reliability
➔ Parity / Journaling:

● #notice.parity [parity-data ...]
● Client can detect if a packet was missed
● Missing packets can be reconstructed from parity
● Quantity of parity depends on QoS

● TODO... (non trivial?)
● J. Lazzarro can comment more on this topic...

A Query System for OSC...
towards a common real-time command/control protocol

Working Group
➔ Interested?

● andy@a2hd.com
● osc-dev mailing list

A Query System for OSC...
towards a common real-time command/control protocol

Working Group: Bundle Handling
● How does the reply handle bundles when it needs to

copy the input into the reply... (J. McCartney)
● Would be easy if you could reference by message ID
● Or... Expand them -- a bundle is equivalent to n bundles

with the same timestamp.
● -> #bundle (t) n [
● /message1,
● /message2, ...
●]
● <- #reply [#bundle (t) /message1]
● <- #reply [#bundle (t) /message2]

A Query System for OSC...
towards a common real-time command/control protocol

Working Group: Leases
➔ Leases are an effective way to allow the client

to request resources on the server (i.e., the re-
quest expires if not renewed), without compro-
mising server reliability. (A. Freed)

● e.g., connection streams with timeouts...

A Query System for OSC...
towards a common real-time command/control protocol

Working Group: String Registry
➔ Hash codes
➔ State

A Query System for OSC...
towards a common real-time command/control protocol

The end.

