
OSC in
SuperCollider Server

James McCartney

OSC in SC

• SC server architecture

• OSC usage in SC server

• thoughts on OSC issues

SC architecture

• client-server

• client: scripting language

• server: synthesis engine

• client and server speak OSC

SC client

• dynamic programming language

• Smalltalk object model

• real time garbage collection

• also borrows from Scheme, APL, Icon, Ruby,
HMSL.

SC server

• a virtual machine for audio

• as dynamic as possible

• as simple as possible

• higher level representation left to client

an audio virtual
machine

• functional units

• operations on the functional units

• OSC messages are a way of dynamically
editing the virtual machine program

functional units

• execution tree

• buffer array

• audio and control buses

execution tree

• internal nodes: groups

• leaf nodes: synths

• synth is a collection of unit generators with
a shared lifetime

• unit generator is a basic signal processing
element

execution tree

• the tree is the virtual machine’s program

• synths are the subroutines

• unit generators are the instructions

• order of execution: depth first, left to right

execution tree

• all nodes are identified by number

• synths have parameters that can be set

• setting a parameter on a group sets the
parameter for all synths it contains

buffer array

• buffers can contain audio or control data

• most buffer commands are asynchronous:

• read/write soundfiles

• alloc, free

• fill by a function

• async commands send a reply when done

audio & control buses

• synths do not connect directly

• all synth connections are through buses

• unit generators for:

• reading, replacing, summing, crossfading

usage of OSC

• obeys time stamps! assumes NTP

• single level name space

• notifications of state changes

• queries

• replies for asynchronous commands

• embedded completion msgs for async cmds

single level name space

• conventional OSC name space not practical

• nodes in the tree may come and go in the
hundreds per second (granular synthesis)

• wanted constant time access to nodes

• pattern matching unecessary

• commands can be hashed

node IDs vs. paths

/group0/group1/group101/synth200/freq/set 440
/group0/group1/group101/synth200/amp/set 0.1
/group0/group1/group101/synth200/pan/set 0.7

/n_set 200 freq 440 amp 0.1 pan 0.7

instead of sending this:

can send this:

notifications

• notifications are sent when there is a
change in the execution tree

• clients register their interest

• server maintains a list of interested clients

• notifications bubble up from the RT thread
to be sent on the NRT thread

queries

• state of the server

• state of a node

• state of a buffer

• values of synth parameters

• values of control buses

• values in a buffer

replies to async
comands

• async commands reply to the sender when
done.

• “/done”, “commandName”

• “/fail”, “commandName”, “errorMsg”

completion messages

• a command to execute when an async
command completes

• embedded in the async command as a blob

• type tag ‘b’

issues

• identifying replies

• structured data

• nested bundles

• sequenced bundles

• security

identifying replies

• quoting entire message back - wasteful

• unique numbers in every message - painful

• hash code

• chance of collision negligible

• very low messaging overhead

structured data

• most RPC schemes can represent rich data
(e.g. XML-RPC, SOAP, XDR) such as arrays
and key-value pairs (a.k.a. structs, records,
maps, dictionaries).

• richer data types allow richer interactions

• OSC has arrays already via ‘[’ and ‘]’ tags

• similarly key-value pairs could use ‘(’ and ‘)’

structured data

• unfortunately no one implements ‘[’ and ‘]’

• most current hosts’ have data types that
are too limited.

• more people are beginning to use tools like
SC, Lisp, Scheme, Python, Ruby, Javascript
which can handle richer data types.

sequenced bundles

• asynchronous messages suspend the bundle

• bundle continues to execute when async
command completes

• eliminates need for completion messages

sequenced bundle
example

• Bundle contains these commands:

• load a sound file into a buffer

• start a node that uses the buffer

• wait for the node to end

• free the buffer

nested bundles. Why?

• no additional guarantees (atomicity)

• consecutive bundles have same behavior

• larger packets not good for UDP

• requires reference counting in the host

• provide no benefits, so let’s remove or
deprecate them

security

• on a network, an open port with a rich
command protocol for initiating tasks on a
very high priority thread is an invitation for
trouble.

• it would be nice for there to be a log in
protocol for OSC

http://www.audiosynth.com
asynth @ io.com

