OSC in
SuperCollider Server




OSC in SC

® 5C server architecture

L el i : e o el i 0 y PR ST BT I"I:':‘.-..—-r','h-l':-- ':-".r-— - I
s S |

.
P g SR

L A - _ T N § Pk et

il RS



SC architecture

client-server
client: scripting language
server: synthesis engine

client and server speak OSC



SC client

dynamic programming language
Smalltalk object model
real time garbage collection

also borrows from Scheme, APL, Icon, Ruby,
aIMN



SC server

a virtual machine for audio
as dynamic as possible
as simple as possible

higher level representation left to client



an audio virtual
machine

® functional units
® operations on the functional units

® OSC messages are a way of dynamically
editing the virtual machine program



functional units

® eXxecution tree ol

® buffer array %

® audio and control buses 1 O P Y o o o




execution tree

&
internal nodes: groups Q'\Q
LA ]
leaf nodes: synths A A

synth is a collection of unit generators with
a shared lifetime

unit generator is a basic signal processing
element



execution tree

® the tree is the virtual machine’s program
® synths are the subroutines
® unit generators are the instructions

® order of execution: depth first, left to right



execution tree

® all nodes are identified by number
® synths have parameters that can be set

® setting a parameter on a group sets the
parameter for all synths it contains



buffer array
=

® buffers can contain audio or control data

® most buffer commands are asynchronous:
® read/write soundfiles
® alloc, free
® fill by a function

® async commands send a reply when done



audio & control buses

NN

® synths do not connect directly
® all synth connections are through buses
® unit generators for:

® reading, replacing, summing, crossfading



usage of OSC

obeys time stamps! assumes NTP
single level name space

notifications of state changes
queries

replies for asynchronous commands

embedded completion msgs for async cmds



single level name space

® conventional OSC name space not practical

® nodes in the tree may come and go in the
hundreds per second (granular synthesis)

® wanted constant time access to nodes
® pattern matching unecessary

® commands can be hashed



node IDs vs. paths

instead of sending this:

/group0/groupl/groupl01/synth200/freqg/set 440
/group0/groupl/groupl0l/synth200/amp/set 0.1

S .,;:._-/.g,;g, p0/groupl/groupl01/s: 'nth200/pa /isekt 20 lis s aai el dic il
e e f Bl R U e e s ey T‘-_'__f‘!.':?':rf-'?,*";_ G % R Ty ) S SR A eI S Ty

F ] ik ) ¥ . 4 e e )
E " e L1 1 g R e e ]




notifications

notifications are sent when there is a
change in the execution tree

clients register their interest
server maintains a list of interested clients

notifications bubble up from the RT thread
to be sent on the NRT thread



queries

state of the server

state of a node

state of a buffer

values of synth parameters
values of control buses

values in a buffer



replies to async
comands

async commands reply to the sender when
done.

) ¢¢

“/done’”’,““commandName”

Y ¢¢

“/fail”’,"commandName”, “errorMsg”



completion messages

® a command to execute when an async
command completes

® embedded in the async command as a blob

® type tag'b’



IES

® identifying replies

® structured data

P R e o e Tk o e T :-_l..r:., i o o g L4 P Tt e i P 5 Sl e el S 0 LTy SRR T, LA 4 e o, T oy L A
s )



identifying replies

® guoting entire message back - wasteful
® unique numbers in every message - painful
® hash code

® chance of collision negligible

® very low messaging overhead



structured data

most RPC schemes can represent rich data
(e.g. XML-RPC, SOAP, XDR) such as arrays

and key-value pairs (a.k.a. structs, records,
maps, dictionaries).

richer data types allow richer interactions
OSC has arrays already via [' and ‘]’ tags

similarly key-value pairs could use ‘(" and®)’



structured data

unfortunately no one implements [’ and |’

most current hosts’ have data types that
are too limited.

more people are beginning to use tools like
SC, Lisp, Scheme, Python, Ruby, Javascript
which can handle richer data types.



sequenced bundles

® asynchronous messages suspend the bundle

® bundle continues to execute when async
command completes

® climinates need for completion messages



sequenced bundle
example

® Bundle contains these commands:
® |oad a sound file into a buffer
® start a node that uses the buffer
® wait for the node to end

® free the buffer



nested bundles.Why!

no additional guarantees (atomicity)
consecutive bundles have same behavior
larger packets not good for UDP
requires reference counting in the host

provide no benefits, so let’s remove or
deprecate them



security

® on a network, an open port with a rich
command protocol for initiating tasks on a
very high priority thread is an invitation for

trouble.

® it would be nice for there to be a log in
protocol for OSC



http://www.audiosynth.com

._. E .-..II ‘-_‘M i ‘-_‘r

. 5 s i : - : = 3 : K
SRR A e gt s e R el U e R S by



